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SUMMARY

We present a spectral=hp element discontinuous Galerkin model for simulating shallow water �ows
on unstructured triangular meshes. The model uses an orthogonal modal expansion basis of arbitrary
order for the spatial discretization and a third-order Runge–Kutta scheme to advance in time. The local
elements are coupled together by numerical �uxes, evaluated using the HLLC Riemann solver. We apply
the model to test cases involving smooth �ows and demonstrate the exponentially fast convergence
with regard to polynomial order. We also illustrate that even for results of ‘engineering accuracy’ the
computational e�ciency increases with increasing order of the model and time of integration. The model
is found to be robust in the presence of shocks where Gibbs oscillations can be suppressed by slope
limiting. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many hydrodynamic applications of interest to hydraulic, coastal and ocean engineering
the characteristic length scale of the problem is large compared to the vertical scale. In this
case, the �ow can be regarded as uniform in depth and approximated by the shallow water
equations (SWE). The SWE are a two-dimensional system of non-linear partial di�erential
equations of hyperbolic type.
The body of literature on numerical modelling of the SWE is vast and covers all types

of numerical methods. The models used in coastal and hydraulic engineering are generally
of low-order—possibly with shock-capturing—e.g. References [1–3], while in oceanographic
and atmospheric sciences the numerical algorithms are predominantly of high-order, e.g. the
quadrilateral nodal spectral element models of Ma [4] and Iskandarani et al. [5]. High-order
Galerkin �nite element (FE) methods have the appealing property of combining the geo-
metrical �exibility of h-type �nite element methods with the high accuracy of the p-type
spectral methods. The above-mentioned spectral element models have been shown to ex-
hibit exponentially fast convergence for smooth waves on staggered [5] and unstaggered [4]
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meshes. In these approaches, a nodal quadrilateral spectral=hp element methods was applied
using a Lagrange polynomial basis through the Gauss–Lobatto–Legendre quadrature points.
This method has a discrete diagonal mass matrix, if a slight under integration is applied,
which is signi�cant for the e�ciency of the method. Within triangular subdomains modal or
hierarchical basis are often applied. However, for modal spectral=hp element discretizations
using a classical Galerkin formulation the mass matrix is not diagonal which severely limits
the e�ciency of the implementation. Nevertheless, as demonstrated in this paper, this problem
can be overcome by using a discontinuous Galerkin formulation.
In this study, we therefore will solve the SWE using a modal triangular spectral=hp discon-

tinuous Galerkin (DG) method following the Runge–Kutta DG method developed by Cockburn
and Shu and co-workers, e.g. References [6–8]. The key feature of the DG method is that
solutions are allowed to be discontinuous over elemental boundaries, while the elements are
coupled using numerical �uxes similar to the �nite volume technique. Of course, in the pres-
ence of discontinuities such as shocks, Gibbs oscillations arise if the polynomial expansions
employed are linear or higher, but—in contrast to classical continuous Galerkin methods—the
oscillations generally do not appear to pollute the whole solution or cause the solution to
‘blow-up’. Further, the Gibbs oscillations can be suppressed by slope limiting [9, 7, 10]. In
addition to allowing shocks to form and propagate in the domain, the DG method gives stable
solutions for equal-order approximations [11] and staggered meshes or mixed approximations
are therefore unnecessary.
The DG method has been applied to the SWE for simulating �ows involving shocks,

such as dam-break �ows and oblique hydraulic jumps [12–14]. These three studies used
essentially low-order approximation on unstructured triangular meshes and suppressed any
Gibbs oscillations by applying limiting procedures. Previous high-order DG SWE models
are the nodal spectral element methods of Dupont [15] and Giraldo et al. [16]. Dupont
used triangular elements in which the expansion basis was made up from a product of 1D
Legendre polynomials with triangular truncation. Giraldo et al. solved the SWE on the sphere
using curvilinear quadrilaterals. The elemental solution was approximated by a nodal Lagrange
polynomial, constructed from a tensor product of 1D Legendre cardinal functions, giving a
diagonal mass matrix if under integration was performed. The exponential convergence of the
two models were con�rmed by numerical tests. In addition, Giraldo et al. investigated the
e�ect of solving the equations in divergence form rather than in Green’s form. Although it
was shown that the Green’s formulation provided more accurate solutions, the di�erence was
found negligible for the test cases considered.
The paper is organized as follows. In Section 2, we outline the governing equations. The

numerical model is presented in Section 3, and applied to several test cases in Section 4.
Finally, in Section 5 we summarize the study and present our conclusions.

2. GOVERNING EQUATIONS

The 2D SWE, expressed in terms of conservative variables, is written in conservation form as

@U
@t
+∇ · F(U)=S(U) (1)
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where F(U)= [E(U);G(U)]T and

U=




H

uH

vH


; E=




uH

u2H + gH 2=2

uvH


; G=




vH

uvH

v2H + gH 2=2


 (2)

Here H (x; y; t)= �(x; y; t)+d(x; y) is the total water depth, d(x; y) is the still water depth and
�(x; y; t) is the free surface elevation; u(x; y; t) and v(x; y; t) are the depth-averaged velocities
in the x- and y-direction, respectively, and g is the acceleration due to gravity. The source
term S accounts for forcing due to friction, bed slopes and Coriolis e�ects and is de�ned as

S=




0

gH (S0x − Sfx) + fv

gH (S0y − Sfy)− fu


 (3)

where S0x and S0y are the bed slopes in the x- and y-direction, respectively. The Coriolis
parameter f is given by the �-plane approximation, i.e. f=f0 + �y. The friction losses are
estimated by the Manning law

Sfx =
uM 2

√
u2 + v2

H 4=3 ; Sfy =
vM 2

√
u2 + v2

H 4=3 (4)

where M is the Manning number.
Considering the homogeneous equations, the SWE can be quasi-linearized as

@U
@t
+

@E
@U

@U
@x
+

@G
@U

@U
@y
= 0 (5)

where the Jacobians of the �ux functions can be evaluated as

@E(U)
@U

=




0 1 0

c2 − u2 2u 0

−uv v u


; @G(U)

@U
=




0 0 1

−uv v u

c2 − v2 0 2v


 (6)

in which c=
√
gH is the wave speed. De�ning an arbitrary unit vector s=[sx; sy]T, we obtain

the following Jacobian matrix:

@(F(U) · s)
@U

=




0 sx sy

(c2 − u2)sx − uvsy 2usx + vsy usy

−uvsx + (c2 − v2)sy vsx usx + 2vsy


 (7)

with eigenvalues

�1 = usx + vsy − c; �2 = usx + vsy; �3 = usx + vsy + c (8)
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The matrices of corresponding right (R=[r1; r2; r3]) and left (L=[l1; l2; l3]T) eigenvectors are

R=




1 0 1

u − csx sy u+ csx

v − csy −sx v+ csy


 (9)

and

L=
1
2c




usx + vsy + c −sx −sy

2c(−usy + vsx) 2csy −2csx
−usx − vsy + c sx sy


 (10)

respectively.

3. DISCONTINUOUS GALERKIN MODEL

3.1. Galerkin formulation

The computational domain � is divided into N non-overlapping triangular elements denoted
by Te of characteristic size he and with boundary @Te such that

� =
N⋃

e=1
Te (11)

Multiplying Equation (1) by a smooth function q(x) and integrating over the element Te we
obtain ∫

Te

@Ui

@t
qi dx+

∫
Te

(∇ · F(U))i qi dx=
∫
Te

S(U)i qi dx (12)

Integrating the second term in Equation (12) by parts gives∫
Te

@Ui

@t
qi dx −

∫
Te

(F(U) · ∇)i qi dx+
∫
@Te

(F(U) · n)i qi ds=
∫
Te

S(U)i qi dx (13)

where n=(nx; ny)T is the outward unit normal to Te. The discrete Galerkin approximation
is obtained by replacing q with a test function q� ∈V� as well as approximating the exact
solution U with U� ∈V�, where the discrete space V� is de�ned as

V�= {q� ∈L2(�) : q�|Te ∈PP(Te); ∀Te} (14)

Here PP(Te) is the space of polynomials of degree at most P in the element Te. To
allow information to propagate between elements, as the elements are discontinuous at the
elemental boundaries, we replace the boundary �ux F(U) that appears in the third term of
Equation (13) with an upwind numerical �ux, to be discussed later. We denote the numerical

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:605–623



SPECTRAL=hp DGM FOR SWE 609

�ux with F̂(U). Thus, we write the DG formulation (after analytically integrating by parts
once more to obtain the divergence form): Find U� ∈V� such that ∀q� ∈V�

∫
Te

@U�i

@t
q�i dx+

∫
Te

(∇ · F(U�))i q�i dx

+
∫
@Te

((F̂(U�)− F(U�)) · n)i q�i ds=
∫
Te

S(U�)i q�i dx (15)

For computational convenience we prefer the divergence form since it involves inner products
of the same forms as classical continuous Galerkin schemes.

3.2. Expansion basis and collapsed co-ordinate system

We use the hierarchical and orthogonal basis functions proposed independently by Proriol
[17], Koornwinder [18] and Dubiner [19], which is a warped product of a one-dimensional
tensor and a two-dimensional tensor. We start by introducing the one-to-one mapping from
global Cartesian co-ordinates (x; y) to local Cartesian co-ordinates (�1; �2) denoted as

(x; y)= �e(�1; �2) (16)

The mapping of the triangular domain Te into the standard triangle Tst is given by �−1
e (Te)=

Tst, where the standard triangle is de�ned by

Tst = {(�1; �2)| − 16�1; �2; �1 + �260} (17)

As the standard triangular domain is not independently bounded by the co-ordinates (�1; �2),
we introduce the so-called collapsed co-ordinate system (�1; �2) [20]. The transformation from
(�1; �2)→ (�1; �2) is given by

�1 = 2
(1 + �1)
(1− �2)

− 1; �2 = �2 (18)

The standard triangle can now be de�ned in terms of collapsed co-ordinates as

�Tst = {(�1; �2)| − 16�1; �261} (19)

which has independent limits. The transformation to collapsed co-ordinate system can be
interpreted as a mapping to a standard quadrilateral region (see Figure 1). The orthogonal
expansion modes �pq are de�ned using warped tensors

�pq(�1; �2)=  ̃p
a(�1) ̃pq

b(�2) (20)

If P	;�
p (z) denotes the pth-order Jacobi polynomial, the principal functions  ̃ i

a(z) and  ̃ ij
b(z)

are de�ned as

 ̃ i
a(z)=P0;0i (z);  ̃ ij

b(z)=
(
1− z
2

)i
P2i+1;0j (z) (21)
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Figure 1. The standard triangle in Cartesian and collapsed co-ordinates.

Figure 2. Construction of the p-type expansion basis.

The construction of the two-dimensional expansion basis is illustrated in Figure 2. In addition
to giving rise to an orthogonal mass matrix, the use of the collapsed co-ordinate system means
that integrals over the domain Te can be evaluated as the product of two one-dimensional in-
tegrals. We can therefore use Gauss–Lobatto quadrature in the �1-direction and Gauss–Radau
quadrature in the �2-direction, in order to avoid incorporating any information from the geo-
metrically singular vertex (�1 = −1, �2 = 1). Note that even though there are two transforma-
tions, (x; y)→ (�1; �2) and (�1; �2)→ (�1; �2), the second transformation can be incorporated
in the quadrature weights and therefore does not have to be computed explicitly.
Finally, we write the approximate solution within an element U� as

U�(x; t)=
P∑

p=0

P∑
q=0
Ũpq(t)�pq(�1; �2); x∈Te (22)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:605–623
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Figure 3. Three wave structure of the HLLC approximate Riemann solver.

where Ũpq(t) contains the local degrees of freedom of expansion coe�cients and the trial
functions �pq(�1; �2) (and also the test functions) are described by Equation (20).

3.3. Numerical �ux

As mentioned above integrals over the domain Te are evaluated using Gauss–Lobatto and
Gauss–Radau quadrature rules. However, using the Gauss–Lobatto or Gauss–Radau quadrature
when estimating the surface integral would mean having to estimate a 2D �ux at the endpoints
(corresponding to the vertices). Hence, it is advantageous to use Gauss quadrature points as
the endpoints are not included. Computing the �ux at a Gauss point on the edge corresponds
to solving a 1D Riemann problem in the normal direction to the edge.
In the context of DG SWE models, previously both the Roe and HLL approximate solvers

have been successfully applied [12, 14], with equivalent results [12]. Alternatively, the numer-
ical �ux can be evaluated using the simpler but more dissipative Lax–Friedrich �ux [13, 16].
In the case of smooth �ows even straightforward averaging have been reported to work [15].
For high-order DG methods the most widely used numerical �ux is the Lax–Friedrich �ux,

as the importance of the choice of �ux appears to decrease with increasing expansion order
[8]. However, in the case of shocks the application of the generalized slope limiter will lower
the approximation within the element to linear and so the Lax–Friedrich �ux might prove too
dissipative. In this study, we have therefore adopted the HLLC approximate Riemann solver
in conjunction with the two-rarefaction assumption [3].
Introducing the rotation matrix and its inverse

T=



1 0 0

0 nx ny

0 −ny nx


; T−1 =



1 0 0

0 nx −ny

0 ny nx


 (23)

we subsequently de�ne Q=TU�=[H;H �u;H �v]T; where �u and �v are the velocities in the
direction normal and tangential to the edge, respectively. The 1D �ux at a Gauss point can
be written

F̂(U�) · n=T−1Ê(Q) (24)

The HLLC solver [3] is based on three wave speed estimates as illustrated in Figure 3, where
the subscripts L and R stand for the left- and right-hand side of the element boundary. We
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estimate the wave speeds as [3]

SL = �uL −
√

gHLsL (25a)

SR = �uR +
√

gHRsR (25b)

S∗ =
SLHR( �uR − SR)− SRHL( �uL − SL)

HR( �uR − SR)− HL( �uL − SL)
(25c)

where

s(L;R) =




√
(H 2∗ +H∗H(L;R))=(2H 2

(L;R)) if H∗¿H(L;R)

1 if H∗6H(L;R)
(26)

and in which H∗ is given by the two-rarefaction Riemann solver:

H∗=
1
g

(
1
2
(
√

gHL +
√

gHR) +
1
4
( �uL − �uR)

)2
(27)

After the wave speeds have been computed the HLLC �ux is given by

Ê(Q)=




E(QL) if SL¿0

E(QL) + SL(Q∗L −QL) if SL606S∗

E(QR) + SR(Q∗R −QR) if S∗606SR

E(QR) if SR60

(28)

where Q∗L and Q∗R are obtained from

Q∗(L;R) =H(L;R)

(
S(L;R) − �u(L;R)
S(L;R) − S∗

) 


1

S∗

�v(L;R)


 (29)

3.4. Boundary conditions

For all element edges aligned on a domain boundary we assign a dummy edge and enforce
the boundary conditions via the Riemann solver.
At a wall boundary we assume slip condition: (u; v) · n=0. This is enforced by setting

�R = �L; �uR =− �uL; �vR = �vL (30)

assuming that the local edge is the left state and the dummy edge is the right state, respectively.
At in�ow boundaries, we set the values at the dummy edge to the a priori known values and
so the condition is enforced weakly through the characteristic variables. In the case where
re�ected outgoing waves appear at the in�ow boundary, we apply the non-re�ecting �ux
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Figure 4. Notation for limiting.

function [21] which is found to work satisfactorily for higher p if the outgoing waves are
reasonably normal to the boundary. For out�ow boundaries, if the �ow can be expected to
be reasonably close to the normal direction, the values at the dummy edge is set equal to the
undisturbed initial state.

3.5. Time stepping

The time stepping is carried out using the explicit third-order Runge–Kutta scheme described
in Reference [6]. Writing the semi-discrete equations as @tU�=L�(U�), advancing from time
level n to n+ 1 are computed in three steps:

1: U(1)� =Un
� +�tL�(Un

� ) (31a)

2: U(2)� = 3
4 U

n
� +

1
4 (U

(1)
� +�tL�(U

(1)
� )) (31b)

3: Un+1
� = 1

3 U
n
� +

2
3 (U

(2)
� +�tL�(U

(2)
� )) (31c)

The restriction on the time step is of order O(P−2), since the growth of the eigenvalue of the
advection operator is O(P2) [20].

3.6. Slope limiting

When simulating shocks we apply the generalized slope limiter, �	h, of Cockburn and Shu
[8] after each Runge–Kutta substep. The �	h limiter works on the linear part of the ap-
proximation. In order to determine when to limit our solution we compute the jump be-
tween elements for the linear part of the approximation. If the jump is larger than a pre-
scribed tolerance the approximation is lowered locally to second-order and the limiter is
invoked.
The notation of the limiting is illustrated in Figure 4, where bi refer to the barycentres

of the triangles Ti, i=0; 1; 2; 3. The mid-point of the edges of the element to be limited,
T0, are indicated by mi, i=1; 2; 3. The non-negative coe�cients 	i and �i depend on mi
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and the geometry, e.g.:

m1 − b0 = 	1(b1 − b0) + �1(b2 − b0) (32)

and for linear functions, denoted by the subscript 1, we subsequently get

A(m1;T0)≡U1(m1)− �UT0 = 	1( �UT1 − �UT0) + �1( �UT2 − �UT0)≡B(m1;T0) (33)

Here �UTi is the mean value of U� in Ti, which for the modal basis adopted in this work is
simply equal to Ũ00(Ti) (the �rst modal expansion coe�cient).
The limiting is performed on the characteristic �elds. Considering the Jacobian

@F( �UT0)
@U

· mi − b0
|mi − b0| (34)

and recalling Equations (9)–(10), we obtain the corresponding R and L matrices. Left mul-
tiplying A(mi ;T0) and B(mi ;T0) with L generates the characteristic �elds.
As discussed in Reference [8] limiting consists of computing the quantities

�i= �m(LA(mi ;T0); 
LB(mi ;T0)) (35)

where 
¿1 is an auxiliary parameter (set equal to 2). The modi�ed minmod function, �m, is
de�ned as

�m(a1; a2)=

{
a1 if |a1|6M (�x)2

m(a1; a2) otherwise
(36)

in which M is a constant (set equal to 50), �x is a measure of the element size and m is
the standard minmod function

m(a1; a2)=

{
s min(|a1|; |a2|) if s=sign(a1)= sign(a2)

0 otherwise
(37)

We then return to the original space by left multiplying �i with R :�i=R�i. Now, we can
write the limited solution in T0 as

�	hU1 = (Ũ00 +
˜̃U00)�00 +

˜̃U01�01 +
˜̃U10�10 (38)

where [10]

˜̃U00 = 1
3 (�1 +�2 +�3) (39a)

˜̃U01 =− 1
3 (2�1 −�2 −�3) (39b)

˜̃U10 = 1
2 (�2 −�3) (39c)
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Clearly ˜̃U00 must be zero in order to keep the mean of T0 unchanged. If
˜̃U00 �=0 then �i are

adjusted as suggested in Reference [8] by calculating

pos=
3∑

i=1
max(0;�i); neg=

3∑
i=1
max(0;−�i) (40)

and

�+ = min
(
1;
neg
pos

)
; �−= min

(
1;
pos
neg

)
(41)

We then compute

�̃i= �+ max(0;�i)− �−max(0;−�i) (42)

and employ �̃i instead of �i in Equations (39a)–(39c).

4. COMPUTATIONAL EXAMPLES

4.1. Standing wave

We demonstrate the exponential convergence of the model by considering the simple case of
a linear standing wave in a rectangular frictionless basin, with the analytical solution:

H (x; y; t) = d+ a cos(kx) cos(!t) (43a)

u(x; y; t) = a
!
kd
sin(kx) sin(!t) (43b)

v(x; y; t) = 0 (43c)

where a is the amplitude, k the wave number and ! the frequency such that w2 = gdk2.
The dimensions of the basin are 200×100 m and the still water depth is set to d = 10 m.
We compute one wave period for a standing wave of wavelength L=400 m with a=0:2 m,
using the linearized SWE with the Coriolis parameter set to zero. The time step is chosen
su�ciently small so temporal error is negligible compared to spatial error. In Table I, we
present the error and order of accuracy for in the L2 and L∞ norms. It is seen that the
convergence—when in the asymptotic range—is optimal and of order O(hP+1) in both the L2

and L∞ norms for both odd and even P. Thus, in the case of p-type re�nement we obtain
exponentially fast convergence, as illustrated in Figure 5.

4.2. Equatorial Kelvin and Rossby waves

Here we solve the SWE, including Coriolis forces, in non-dimensional variables (denoted with
asterisks):

x=
r

E1=4
x∗; t=

E1=4

2�
t∗; �=d0�∗; (u; v)=

1√
gd0

(u∗; v∗); f=
2�
E1=4

y∗ (44)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:605–623



616 C. ESKILSSON AND S. J. SHERWIN

Table I. Error and order of convergence for the H -component.

N =16 N =64 N =256

Norm P Error Error Order Error Order

L2 1 5.9368E−01 1.1036E−01 2.43 2.4301E−02 2.18

2 2.3578E−02 2.9446E−03 3.00 3.6933E−04 3.00

3 1.1690E−03 7.2890E−05 4.00 4.5704E−06 4.00

4 4.5379E−05 1.4247E−06 4.99 4.4809E−08 4.99

L∞ 1 1.2106E−02 3.8632E−03 1.65 1.0287E−03 1.91

2 1.5059E−03 2.1294E−04 2.82 2.5690E−05 3.05

3 9.8556E−05 6.7661E−06 3.86 4.3254E−07 3.97

4 5.0395E−06 1.7785E−07 4.82 5.4439E−09 5.03

Figure 5. Exponential convergence in the case of p-type re�nement (N=64).

where E=4�2r2(gd0)−1 is the Lamb parameter, r is the radius of the earth, �=2� day
−1

is the angular frequency of the earth’s rotation and d0 is the equivalent depth for a reduced
gravity model. Using an equivalent depth of 0:40 m, the length scale becomes 295 km and
the time scale 1:71 days [22]. For convenience we drop the asterisks for the rest of this
section.
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Figure 6. Propagation of an equatorial Kelvin wave (64 elements of order 14):
(a) Initial condition and (b) at t=10.

First we use the linearized SWE to simulate a linear equatorial Kelvin wave, with the
analytic solution:

H (x; y; t) = 1 + exp
(

−y2

2

)
exp

(
− (x + 5− t)2

2

)
(45a)

u(x; y; t) = exp
(

− y2

2

)
exp

(
− (x + 5− t)2

2

)
(45b)

v(x; y; t) = 0 (45c)

The equatorial Kelvin wave propagates eastward in a rectangular basin of size 20×10 non-
dimensional units with constant depth and semi-periodic boundaries. Setting the friction to
zero, the Kelvin wave propagates unchanged (see Figure 6). Integrating for 10 and 100 time
units, the CPU times for obtaining an ‘engineering accuracy’ of 10% and a ‘scienti�c accuracy’
of 1% relative error—using di�erent polynomial orders and time steps—are presented in
Table II. Note that when obtaining the values presented in Table II, for simplicity, we have
used structured uniform triangular meshes. Also, note that for these large errors we are usually
not in the asymptotic range of convergence. Nevertheless, from Table II it is evident that the
model becomes increasingly e�cient with increasing order in the limit of long-time integration.
Secondly, we consider the case of a westward travelling solitary Rossby wave using the

non-linear SWE. The zeroth-order initial conditions are given by [22]

H (x; y; 0) = 1 + 
(x)
(
3 + 6y2

4

)
exp

(
− y2

2

)
(46a)

u(x; y; 0) = 
(x)
(−9 + 6y2

4

)
exp

(
− y2

2

)
(46b)

v(x; y; 0) =
@
(x)
@x

2y exp
(

− y2

2

)
(46c)
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Table II. CPU time in seconds for obtaining a �xed relative error of the H -component
(using a single 2 GHz Pentium IV processor).

P=2 P=4 P=6
Integration

Relative error (%) time CPU N CPU N CPU N

10 10 1.1E+00 144 3.7E−01 36 3.3E-01 16

100 5.2E+01 400 1.0E+01 64 1.3E+01 36

1 10 3.2E+01 1296 2.1E+00 100 1.3E+00 36

100 4.5E+02 1600 6.0E+01 196 3.1E+01 64

Figure 7. Propagation of an equatorial Rossby solitary wave: (a) Initial surface elevation; (b) after 10
time units; (c) after 20 time units and (d) after 40 time units.

where 
(x)=0:771 a2 sech2(ax) and where a is the parameter determining the amplitude of
the solitary wave (set to 0.395). We discretized the 48×16 unit basin into 96 elements of
order 8 and integrate for 40 time units using 1000 time steps. All boundaries are treated
as walls. Figure 7 shows the evolution of the wave. Initially, the wave lose some mass
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Figure 8. Dam-break problem. Non-limited solutions: (a) Initial state. Water depth at t=7:2 s; (b) 214
elements of 4th order; (c) 214 elements of 6th order; and (d) 436 elements of 6th order.

as an eastward propagating Kelvin wave, which is caused by the use of non-exact initial
condition [4]. The computed phase velocity is −0:77 m s−1, in good agreement with the
analytical value of −0:78 m s−1. The result is in accordance with results obtained by high-
order continuous Galerkin models [4, 5].

4.3. Dam-break

The instantaneous failure of an anti-symmetric dam is a standard test case for shock-capturing
SWE models. The computational domain consists of a 200× 200 m region with a 10 m
wide dam. The dam runs parallel to the y-axis, centred at x=100 m, while the breach is
75 m wide and centred at y=125 m. The bottom is horizontal and frictionless. The wa-
ter depth is 10 m upstream of the dam and 5 m downstream, see Figure 8(a). The �uid
is initially at rest and at the upstream (x=0 m) and downstream (x=200 m) boundaries
the water depth is held constant to the initial values. All other boundaries are treated as
walls.
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Figure 9. Dam-break problem: Limited solutions. Water depth at t=7:2s, (a) 436 elements of 3rd order;
and (b) 3502 elements of 3rd order.

The domain is discretized into 214 elements and we simulate up to 7:2 s after the dam-break
using a time step of 0:01 s. In Figure 8(b) and 8(c) we show the results using 4th- and 6th-
order expansions without limiter, respectively. We observe a bore travelling downstream and
a rarefaction wave travelling upstream. The results are, in general, similar to results presented
in the literature [2, 23, 24] with the exception of the Gibbs oscillations inevitably produced
by a high-order method without limiting. The solution is initially improved by the increase
of polynomial order. However, after the solution is properly resolved the oscillations increase
with increasing order, and no further bene�t is obtained from p-type re�nement. In addition,
without any limiter the oscillations also increased when h-type re�nement is performed, as
seen from Figure 8(d). Nevertheless, the oscillations are con�ned to just the neighbouring
elements and do not degrade the general solution away from the shock.
Figure 9 shows limited solutions of the same problem using 436 and 3502 elements of

3rd order. The limiter is invoked if the jump in water depth normalized with the mean water
depth is larger than 0.01. We see that upstream of the dam the solution has not been limited
to any larger extent in either of the two simulations. The shock transition takes in general
two to three elements—which for the coarse mesh gives a very wide shock. A close look on
Figure 9 reveals that there still are some minor oscillation present in both simulations, but on
the whole the oscillations have been suppressed by the limiter.

4.4. Harbour problem

Here we illustrate the model’s ability to handle complex geometries with the more practical
application of wave disturbance in an harbour. Consider the realistic port layout presented
in Figure 10. The layout is based on the Port of Visby, located on the island Gotland in
the Baltic Sea, with the simpli�cation that the break-waters are modelled to be fully re-
�ective. During autumn storms waves with periods up to 9 s and heights over 4:5 m can
attack the harbour from the direction indicated in Figure 10(a). As might be expected from
the layout, problems are most severe at berth no. 5. The wave induced motions of the
ferry usually moored at this berth can be so large it has to be moved to another berth in
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Figure 10. Harbour layout: (a) Mesh and boundary conditions, (b) depth.

Figure 11. Snapshot of surface elevation after 500 s.

order to avoid damages on the RoRo ramps, causing disruption of the cargo handling in the
port.
In this simulation, however, we illustrate the less severe case of a sinusoidal waves with a

period of 10:1 s and heights of 0:5m penetrates the harbour. For this case, we have applied a
uniform bottom friction with a Manning number of M =0:031. The water is initially assumed
to be motionless. Figure 11 shows a snapshot of the surface elevation after running the model
for 500 s using elements of polynomial order 5. At berth no. 5, the maximum wave height
during the simulation is roughly 0:35 m. If the outer break-water is elongated with 200 m—
as intended in the original layout, but abandoned for economic reasons—the wave height is
decreased to approximately 0:25 m.
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5. CONCLUSIONS

We have presented a high-order discontinuous Galerkin method for simulating 2D shallow
water �ows on unstructured triangular domains. The model employs orthogonal modal basis
functions in space and a third-order Runge–Kutta scheme in time. The model was shown to
exhibit optimal convergence, O(hP+1), for smooth problems. Thus, we obtain the expected
exponential convergence in the case of p-type re�nement, in accordance with previous con-
tinuous high-order Galerkin models [4, 5]. The exponential convergence, in combination with
the diagonal mass matrix due to the orthogonal expansion basis, gives a computationally ef-
�cient model. The e�ciency is seen to increase with increasing order of the model and time
of integration—even for results of engineering accuracy.
The DG approach allows for discontinuous solutions, as illustrated with the dam-break

test case, which lead to Gibbs oscillations in the absence of any arti�cial viscosity, �lter or
limiter. In contrast to classical continuous methods, however, the oscillations generally do not
pollute the whole solution or cause ‘blow-ups’. We removed the oscillations by applying the
generalized slope limiter. As the slope limiter lower the approximation order to linear at the
vicinity of a shock, it should ideally be combined with h-re�nement to avoid losing accuracy
upstream of the shock.
The model’s geometrical �exibility and usefulness for ‘real-life’ applications was demon-

strated considering wave disturbance in a harbour with complicated geometry. However, due
to the non-dispersive properties of the SWE the restriction of the water depth to wave length
ratio is too severe for many applications in coastal engineering. In order to relax the restriction
and allow simulation of dispersive waves Boussinesq-type equations can be used, and present
work is directed towards extending the SWE model to incorporate dispersive terms.
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